Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.041
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 3098-3106, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629570

RESUMO

In recent years, the environmental pollution of microplastics in Poyang Lake has received increasing attention. Baisha Lake of Poyang Lake was selected as the study area, and samples of water and sediments of Baisha Lake and the microplastics therein were collected, and the polymer types of microplastics were identified as polyethylene (PE), polyester (PET), polypropylene (PP), and polystyrene (PS) using Fourier infrared spectroscopy. We also analyzed the structural composition of bacterial communities in water, in sediments, and on microplastic surfaces using 16S high-throughput sequencing. The species richness and diversity of bacteria on the microplastic surfaces were lower than those in the surrounding water and sediments. The results of NMDS analysis showed that the bacterial community structures on the microplastic surfaces differed greatly from those in the surrounding sediments and water. The bacterial community composition in water and sediment differed from that on the microplastic surfaces, and the dominant bacterial phyla on the microplastic surfaces were Proteobacteria and Bacteroidota, and their relative abundance on the microplastic surfaces was higher than that in sediment. The relative abundance of Proteobacteria was higher than that in water. The relative abundances of Bacteroidota and Actinobacteriota were significantly lower than that of water. Massilia and Pseudomonas were the dominant genera on the microplastic surfaces, and their relative abundances were significantly higher than those in the surrounding water and sediments. BugBase phenotype prediction revealed that the relative abundance of contains mobile elements, biofilm formation, potential pathogenicity, and stress tolerance phenotypes of microplastic bacterial communities were significantly higher than those of the surrounding water and sediments. The results revealed that microplastics may have contributed to the spread of harmful bacteria, including pathogenic bacteria, and increased the potential pathogenicity of bacterial communities. Additionally, microplastic surface bacterial communities had higher phenotypes of mobile gene element content. Revealing the potential harm of microplastic pollution to wetland ecology at the micro level may provide a scientific reference for maintaining the ecological stability of wetlands.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Lagos/química , Monitoramento Ambiental , Água/análise , Bactérias/genética , Proteobactérias , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
2.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570413

RESUMO

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Assuntos
Mercúrio , Metais Pesados , Criança , Adulto , Humanos , Monitoramento Ambiental/métodos , Água/análise , Rios , Mar Negro , Turquia , Metais Pesados/análise , Mercúrio/análise , Medição de Risco , Sódio/análise , Cádmio/análise
3.
PLoS One ; 19(4): e0299785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598442

RESUMO

Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 µg TPF g-1 soil hr-1), arylsulfatase activity (82.8 µg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.


Assuntos
Solo , Triticum , Triticum/genética , Água/análise , Clorofila , Biomassa , Grão Comestível/química
4.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574411

RESUMO

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Assuntos
Ascomicetos , Reishi , beta-Glucanas , Glucanos/química , Reishi/química , Polissacarídeos/química , beta-Glucanas/química , Carpóforos/química , Água/análise
5.
J Environ Manage ; 357: 120828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579473

RESUMO

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Assuntos
Reatores Biológicos , Água , Humanos , Animais , Suínos , Anaerobiose , Água/análise , Fezes , Digestão , Metano/análise
6.
Food Microbiol ; 121: 104515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637077

RESUMO

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Viabilidade Microbiana , Salmonella/fisiologia , Água/análise , Temperatura Alta
7.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627563

RESUMO

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Assuntos
Secas , Superóxido Dismutase , Prolina , China , Folhas de Planta/química , Fotossíntese/fisiologia , Plântula/fisiologia , Árvores , Água/análise
8.
Environ Monit Assess ; 196(5): 454, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622372

RESUMO

This work presents a sensitive and accurate analytical method for the determination of phenytoin at trace levels in domestic wastewater and synthetic urine samples by gas chromatography-mass spectrometry (GC-MS) after the metal sieve-linked double syringe liquid-phase microextraction (MSLDS-LPME) method. A metal sieve was produced in our laboratory in order to disperse water-immiscible extraction solvents into aqueous media. Univariate optimization studies for the selection of proper extraction solvent, extraction solvent volume, mixing cycle, and initial sample volume were carried out. Under the optimum MSLDS-LPME conditions, mass-based dynamic range, limit of quantitation (LOQ), limit of detection (LOD), and percent relative standard deviation (%RSD) for the lowest concentration in calibration plot were figured out to be 100.5-10964.2 µg kg-1, 150.6 µg kg-1, 45.2 µg kg-1, and 9.4%, respectively. Detection power was improved as 187.7-folds by the developed MSLDS-LPME-GC-MS system while enhancement in calibration sensitivity was recorded as 188.0-folds. In the final step of this study, the accuracy and applicability of the proposed system were tested by matrix matching calibration strategy. Percent recovery results for domestic wastewater and synthetic urine samples were calculated as 95.6-110.3% and 91.7-106.6%, respectively. These results proved the accuracy and applicability of the proposed preconcentration method, and the obtained analytical results showed the efficiency of the lab-made metal sieve apparatus.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias , Fenitoína/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/química , Água/análise , Microextração em Fase Líquida/métodos , Limite de Detecção
9.
Water Res ; 254: 121385, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452525

RESUMO

The Yangtze River is the third longest river in the world with more than 6300 km, covering 0.4 billion people. However, the aquatic ecosystem of the Yangtze River has been seriously damaged in the past decades due to a rapid development of economic and industrialization along the coast. In this study, we first established a dataset of fifty elements, including nine common heavy metals (HMs) and forty-one other elements, in the Yangtze River Basin through the collection of historical data from 2000 to 2020, and then analyzed their spatiotemporal distribution characteristics. The results indicated that the Three Gorges Reservoir (TGR), a region formed by the construction of the Three Gorges Dam (TGD), may act as a sink for these elements from upstream regions. The concentrations of seven elements in surface water and 13 elements in sediment obviously increased from the upstream region of the TGR to the TGR. In addition, ten elements in the surface water and 5 elements in the sediments clearly decreased, possibly because of the interception effects of the TGD. On a timescale, Cr obviously tended to migrate from the water phase to the sediment; Pb tended to migrate from the sediment to the water phase. In the ecological risk assessment, all common HMs in surface water were supposed to have negligible risks as protecting 90 % of aquatic organisms; Cd (210.2), Hg (58.0) and As (43.1) in sediment posed high and moderate ecological risks using the methodology of the potential ecological risk index. Furthermore, Hunan Province is at considerable risk according to the sum of the potential risk index (314.8) due to Cd pollution (66.8 %). These fundamental data and results will support follow-up control strategies for elements and policies related to aquatic ecosystem protection in the Yangtze River Basin.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Rios , Cádmio/análise , Estudos Retrospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Água/análise , China
10.
Sci Total Environ ; 926: 171587, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490421

RESUMO

Polyacrylamide (PAM) possesses unique characteristics, including high water solubility, elevated viscosity and effective flocculation capabilities. These properties make it valuable in various sectors like agriculture, wastewater treatment, enhanced oil recovery, and mineral processing industries, contributing to a continually expanding market. Despite its widespread use globally, understanding its environmental fate at the soil-water interface remains limited. This article aims to provide an overview of the occurrence, degradation pathways, toxicity, and risks associated with PAM in the bioenvironment. The findings indicate that various degradation pathways of PAM may occur in the bioenvironment through mechanical, thermal, chemical, photocatalytic degradation, and/or biodegradation. Through a series of degradation processes, PAM initially transforms into oligomers and acrylamide (AM). Subsequently, AM may undergo biodegradation, converting into acrylic acid (AA) and other compounds such as ammonia. Notably, among these degradation intermediates, AM demonstrates high biodegradability, and the bioaccumulations of both AM and AA are not considered significant. Ensuring the sustainable use of PAM necessitates a comprehensive understanding among policymakers, scholars, and industry professionals regarding PAM, encompassing its properties, applications, degradation pathways, toxic effect on humans and the environment, and relevant regulations. Additionally, this study offers insights into future priority research directions, such as establishing of a reliable source-to-destination supply chain system, determining the maximum allowable amount for PAM in farmlands, and conducting long-term trials for the PAM-containing demolition residues.


Assuntos
Solo , Água , Humanos , Água/análise , Resinas Acrílicas/química , Acrilamida
11.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433329

RESUMO

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Secas , Picea/microbiologia , Casca de Planta/química , Doenças das Plantas/microbiologia , Terpenos , Fenóis , Noruega , Água/análise , Carboidratos/análise
12.
New Phytol ; 242(3): 975-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439696

RESUMO

Stable oxygen isotope ratio of tree-ring α-cellulose (δ18Ocel) yields valuable information on many aspects of tree-climate interactions. However, our current understanding of the mechanistic controls on δ18Ocel is incomplete, with a knowledge gap existent regarding the fractionation effect characterizing carbonyl-water oxygen exchange during sucrose translocation from leaf to phloem. To address this insufficiency, we set up an experimental system integrating a vapor 18O-labeling feature to manipulate leaf-level isotopic signatures in tree saplings enclosed within whole-canopy gas-exchange cuvettes. We applied this experimental system to three different tree species to determine their respective relationships between 18O enrichment of sucrose in leaf lamina (Δ18Ol_suc) and petiole phloem (Δ18Ophl_suc) under environmentally/physiologically stable conditions. Based on the determined Δ18Ophl_suc-Δ18Ol_suc relationships, we estimated that on average, at least 25% of the oxygen atoms in sucrose undergo isotopic exchange with water along the leaf-to-phloem translocation path and that the biochemical fractionation factor accounting for such exchange is c. 34‰, markedly higher than the conventionally assumed value of 27‰. Our study represents a significant step toward quantitative elucidation of the oxygen isotope dynamics during sucrose translocation in trees. This has important implications with respect to improving the δ18Ocel model and its related applications in paleoclimatic and ecophysiological contexts.


Assuntos
Oxigênio , Árvores , Oxigênio/análise , Sacarose , Água/análise , Floema , Isótopos de Oxigênio/análise , Folhas de Planta/química , Isótopos de Carbono/análise
13.
Huan Jing Ke Xue ; 45(3): 1539-1552, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471868

RESUMO

The global occurrences of lake eutrophication have led to algal bloom and the subsequent algal decomposition, releasing high amounts of algae-derived dissolved organic matter (DOM) into the lake water. Algae-derived DOM could regulate the quantity and composition of DOM in lake water and further impact the biogeochemical cycles of multiple elements. In this study, the dynamic changes in the quantity and quality of DOM during algal decomposition under different eutrophic scenarios (e.g., from oligotrophication to severe eutrophication) were monitored, and the corresponding environmental effects (e.g., microbial responses and greenhouse gas emissions) caused by algal decomposition were further explored. The results showed that algal decomposition significantly increased the DOM levels, bioavailability, and intensities of fluorescent components in the water. The total DOM levels gradually decreased, whereas the average molecular weight increased along the decomposition process. Furthermore, unsaturated hydrocarbon and aliphatic compounds were preferentially utilized by microorganisms during algal decomposition, and some refractory molecules (e.g., lignin, condensed hydrocarbons, and tannin with high O/C values) were synchronously generated, as evidenced by the results from ultra-high-resolution mass spectrometry. The dominant bacterial species during algal decomposition shifted from Proteobacteria (46%) to Bacteroidetes (42%). In addition, algae addition resulted in 1.2-5 times the emissions of CO2 and CH4 from water, and the emission rates could be well predicted by the optical index of a254 in water. This study provides comprehensive perspectives for understanding the environmental behaviors of aquatic DOM and further paves the ways for the mitigation of lake eutrophication.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Espectrometria de Massas , Bactérias , Água/análise , Eutrofização , China
14.
Huan Jing Ke Xue ; 45(2): 1004-1014, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471938

RESUMO

To understand the contamination characteristics and ecological risk of antibiotics in contaminated fields of pharmaceutical plants, samples of the surface soil, soil column, wastewater treatment process water, ground water, and residue dregs were collected from two typical antibiotic pharmaceutical plants in South and North China. A total of 87 commonly used antibiotics were quantified using ultrasound extraction-solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry. The results showed that a total of 31 antibiotics of five classes were detected in all types of samples, and the maximum concentrations at each sampling point in the surface soil, soil column, residue dregs, wastewater treatment process water, and groundwater were 420 ng·g-1, 595 ng·g-1, 139 ng·g-1, 1 151 ng·L-1, and 6.65 ng·L-1, respectively. Most of the antibiotics were found in the surface soil, showing a decreasing trend with the depth of the soil column. The ecological risk assessment indicated that sulfamethazine, sulfaquinoxaline, tetracycline, chlorotetracycline, and D-sorbitol were at higher risk. Improving the efficiency of antibiotic removal from pharmaceutical wastewater and preventing production shop leaks are effective measures of controlling antibiotic contamination into and around fields in pharmaceutical plants.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Poluentes Químicos da Água/análise , Águas Residuárias , Água/análise , China , Solo , Preparações Farmacêuticas
15.
Se Pu ; 42(3): 256-263, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503702

RESUMO

Herbicides play an important role in preventing and controlling weeds and harmful plants and are increasingly used in agriculture, forestry, landscaping, and other fields. However, the effective utilization rate of herbicides is only 20%-30%, and most herbicides enter the atmosphere, soil, sediment, and water environments through drift, leaching, and runoff after field application. Herbicide residues in the environment pose potential risks to ecological safety and human health. Therefore, establishing analytical methods to determine herbicide residues in environmental samples is of great importance. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) in positive electrospray ionization mode (ESI+) was developed for the determination of isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water. The instrumental detection parameters, including electrospray ionization mode, mobile phase, and chromatographic column, were optimized. The mobile phases were methanol (A) and 0.1% formic acid aqueous solution (B). Gradient elution was performed as follows: 0-1.0 min, 60%A; 1.0-2.0 min, 60%A-90%A; 2.0-3.0 min, 90%A; 3.0-4.0 min, 90%A-60%A; 4.0-5.0 min, 60%A. The samples were salted after extraction with acetonitrile and cleaned using a C18 solid-phase extraction column. Different solid-phase extraction columns and leaching conditions were investigated during sample pretreatment. Working curves in the neat solvent and matrix were constructed by plotting the measured peak areas as a function of the concentrations of the analytes in the neat solvent and matrix. Good linearities were found for isoxaflutole, metazachlor, and saflufenacil in the solvent and matrix-matched standards in the range of 0.0005-0.02 mg/L, with r≥0.9961. The matrix effects of the three herbicides in soil, sediment, and water ranged from -10.1% to 16.5%. The limits of detection (LODs, S/N=3) for isoxaflutole, metazachlor, and saflufenacil were 0.05, 0.01, and 0.02 µg/kg, respectively. The limits of quantification (LOQs, S/N=10) for isoxaflutole, metazachlor, and saflufenacil were 0.2, 0.05, and 0.05 µg/kg, respectively. The herbicides were applied to soil, sediment, and water at spiked levels of 0.005, 0.1, and 2.0 mg/kg, respectively. The average recoveries for isoxaflutole, metazachlor, and saflufenacil in soil, sediment, and water were in the ranges of 77.2%-101.9%, 77.9%-105.1%, and 80.8%-107.1%, respectively. The RSDs for isoxaflutole, metazachlor, and saflufenacil were in the ranges of 1.4%-12.8%, 1.2%-7.7%, and 1.5%-11.5%, respectively. The established method was used to analyze actual samples collected from four different sites in Zhejiang Province (Xiaoshan, Taizhou, Dongyang, and Yuhang) and one site in Heilongjiang (Jiamusi). The proposed method is simple, rapid, accurate, stable, and highly practical. It can be used to detect isoxaflutole, metazachlor, and saflufenacil residues in soil, sediment, and water and provides a reference for monitoring the residual pollution and environmental behavior of herbicides.


Assuntos
Acetamidas , Herbicidas , Pirimidinonas , Sulfonamidas , Humanos , Cromatografia Líquida , Herbicidas/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Água/análise , Solo/química , Solventes/análise , Extração em Fase Sólida
16.
Ying Yong Sheng Tai Xue Bao ; 35(1): 169-176, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511453

RESUMO

Microbial residues are an important component of soil organic carbon (SOC). It is unclear how long-term thinning affects the accumulation characteristics of microbial residue carbon (C). We analyzed the differences in soil physicochemical properties, microbial communities, extracellular enzyme activities, and microbial residue C in topsoil (0-10 cm) and subsoil (20-30 cm) in Picea asperata plantation of non-thinned (control, 4950 trees·hm-2) and thinned for 14 years (1160 trees·hm-2) stands, aiming to reveal the regulatory mechanism of thinning on microbial residue C accumulation. The results showed that thinning significantly increased SOC content, total nitrogen content, available phosphorus content, the proportion of particulate organic C, soil water content, C-cycle hydrolase, and acid phosphatase activities, but significantly reduced the proportion of mineral-associated organic C. Thinning significantly affected the content of fungal and microbial residue C, and the contribution of microbial residue C to SOC, and these effects were independent of soil layer. The content of fungal and microbial residue C was 25.0% and 24.5% higher under thinning treatments. However, thinning significantly decreased the contribution of microbial residue C to SOC by 12.3%, indicating an increase in the proportion of plant-derived C in SOC. Stepwise regression analysis showed that total nitrogen and soil water content were key factors influencing fungal and micro-bial residue C accumulation. In summary, thinning promoted microbial residue C sequestration by altering soil pro-perties and changed the composition of SOC sources.


Assuntos
Picea , Solo , Solo/química , Carbono/análise , Microbiologia do Solo , Região dos Alpes Europeus , Minerais , China , Nitrogênio/análise , Água/análise
17.
Sci Total Environ ; 922: 171344, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432391

RESUMO

Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.


Assuntos
Água Doce , Poluentes Químicos da Água , Humanos , Água Doce/análise , Águas Residuárias , Biodegradação Ambiental , Água do Mar , Água/análise , Poluentes Químicos da Água/análise , Benzopiranos/química , Tetra-Hidronaftalenos/análise
18.
ACS Sens ; 9(3): 1489-1498, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440995

RESUMO

Detection of microplastics from water is crucial for various reasons, such as food safety monitoring, monitoring of the fate and transport of microplastics, and development of preventive measures for their occurrence. Currently, microplastics are detected by isolating them using filtration, separation by centrifugation, or membrane filtration, subsequently followed by analysis using well-established analytical methods, such as Raman spectroscopy. However, due to their variability in shape, color, size, and density, isolation using the conventional methods mentioned above is cumbersome and time-consuming. In this work, we show a surface-nanodroplet-decorated microfluidic device for isolation and analysis of small microplastics (diameter of 10 µm) from water. Surface nanodroplets are able to capture nearby microplastics as water flows through the microfluidic device. Using a model microplastic solution, we show that microplastics of various sizes and types can be captured and visualized by using optical and fluorescence microscopy. More importantly, as the surface nanodroplets are pinned on the microfluidic channel, the captured microplastics can also be analyzed using a Raman spectroscope, which enables both physical (i.e., size and shape) and chemical (i.e., type) characterization of microplastics at a single-particle level. The technique shown here can be used as a simple, fast, and economical detection method for small microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Microfluídica , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água/análise
19.
Environ Geochem Health ; 46(3): 111, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466501

RESUMO

With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Metais Pesados , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Humanos , Água/análise , Águas Residuárias , Disruptores Endócrinos/análise , Metais Pesados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
20.
Sci Rep ; 14(1): 7034, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528068

RESUMO

Signal processing techniques are of vital importance to bring THz spectroscopy to a maturity level to reach practical applications. In this work, we illustrate the use of machine learning techniques for THz time-domain spectroscopy assisted by domain knowledge based on light-matter interactions. We aim at the potential agriculture application to determine the amount of free water on plant leaves, so-called leaf wetness. This quantity is important for understanding and predicting plant diseases that need leaf wetness for disease development. The overall transmission of 12,000 distinct water droplet patterns on a plastized leaf was experimentally acquired using THz time-domain spectroscopy. We report on key insights of applying decision trees and convolutional neural networks to the data using physics-motivated choices. Eventually, we discuss the generalizability of these models to determine leaf wetness after testing them on cases with increasing deviations from the training set.


Assuntos
Aprendizado de Máquina , Física , Folhas de Planta/química , Água/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...